

光のエネルギーを吸収するとは?

禁制帯幅 Eg (eV)

7

他の太陽電池材料との比較: 特徴は何か?

Characteristic points of $BaSi_2$ compared with other materials

材料 項目	BaSi ₂ 系	結晶 Si 系	薄膜 Si 系	CIS 系	CdTe	Ⅲ-Ⅴ族 集光多接合	有機
太陽光との 整合 : バンド ギャップ	〇 1.4eV に 制御可	∆ 1.1eV	Ο 1. 7eV(a-Si) 1. 1eV(μ-Si)	〇 1.4eV に 制御可	O 1. 4eV	O 0.66~2.0eV	O 1.0∼2.0eV
資源量 (地殻中存 在順位)	〇 Si∶2 位 Ba:14 位 Sr:15 位	O Si∶2 位	O Si:2位	× In∶65 位 Se∶66 位	× Cd∶62 位 Te∶70 以下	× Ga∶34 位 As∶51 位	
光吸収層の 膜厚	〇 1µm 程度	× 100 µm 以上	∆ 数~10 µm	〇 数µm	〇 数µm	〇 数µm	0
長期安定性 光劣化	O 光劣化なし	0	 光劣化	0	 電極材拡散	0	×
結晶品質	〇 高品質エピ タキシャル	〇 高品質 バルク結晶	△ アモルファ ス+微結晶	△ 微結晶	 微結晶	〇 高品質エピ タキシャル	△ アモルファ ス+微結晶
コメント	・低環境負荷 ・基盤技術の 確立が必要	 ・成熟技術 ・実用太陽電 池の 90% 	・高スループ ット	·高変換効率	・高変換効率 ・Cd の安全性 に懸念	・超高効率 ・集光、追尾 機構が必要	・高効率化、 耐久性向上 が課題

2. 分光感度特性

Photoresponsivity

3. BaSi₂/Siトンネル接合の形成

Formation of heavily doped BaSi₂/Si tunnel junction for an electrical contact

4. 太陽電池動作の実証

Demonstration of solar cell

Growth of BaSi₂ epitaxial films using a template layer

Inomata,..,Suemasu, Jpn. J. Appl. Phys. 43 (2004) 4155, L478, L771.

Electrical properties of impurity-doped BaSi₂ films

Kobayashi,.... Suemasu, *Thin Solid Films* **515** (2007) 8242. Kobayashi,.....Suemasu, *Appl. Phys. Express* **1** (2008) 051403.

1. 不純物ドーピングによる伝導型、キャリア密度制御 Control of electron and hole concentrations by impurity doping

2. 分光感度特性 Photoresponsivity

3. BaSi₂/Siトンネル接合の形成

Formation of heavily doped BaSi₂/Si tunnel junction for an electrical contact

4. 太陽電池動作の実証 Demonstration of solar cell

Analysis of grain size by Electron Backscatter Diffraction

Formation of (111)-oriented Si layers on SiO₂ by Al-induced crystallization

Growth of polycrystalline BaSi₂ films on AIC-Si/SiO₂

Tsukada,.....Suemasu, J. Cryst. Growth 311 (2009) 3581.

Photoresponse properties of polycrystalline BaSi₂ films on SiO₂

Tsukada,.....Suemasu, Appl. Phys. Express 2 (2009) 051601.

- 1. 不純物ドーピングによる伝導型、キャリア密度制御 Control of electron and hole concentrations by impurity doping
- 2. 分光感度特性 Photoresponsivity
- 3. BaSi₂/Siトンネル接合の形成

Formation of heavily doped BaSi₂/Si tunnel junction for an electrical contact

4. 太陽電池動作の実証 Demonstration of solar cell

Band diagrams of BaSi₂/Si structure

Photoresponsivity of BaSi₂ layers on tunnel junction

Wet chemical etching of BaSi₂ layers on Si

Saito,.....Suemasu, Jpn. J. Appl. Phys. 48 (2009) 106507.

- 1. 不純物ドーピングによる伝導型、キャリア密度制御 Control of electron and hole concentrations by impurity doping
- 2. 分光感度特性 Photoresponsivity

特願2007-208729, US2009/0044862 特願2008-218688, PCT/WO2009/028560 特願2009-115337,

3. BaSi₂/Siトンネル接合の形成

Formation of heavily doped BaSi₂/Si tunnel junction for an electrical contact

4. 太陽電池動作の実証 Demonstration of solar cell

Schottky-barrier diode n-BaSi₂/CoSi₂

Characterization of n-BaSi₂/CoSi₂ Schottky diode

まとめ ど不純物ドーピングによる伝導型、キャリア密度制御 Control of electron and hole concentrations by impurity doping n-type: Sb($10^{16} \rightarrow 1 \times 10^{20} \text{ cm}^{-3}$), As p-type: In($10^{16} \rightarrow 5 \times 10^{17} \text{cm}^{-3}$), Al, Cu ♥ 分光感度特性 Photoresponsivity Photocurrent increases sharply for photons greater than 1.25 eV (~Eg). $R \sim 75 \text{mA/W}$ at 2.3 eV. ♥BaSi₂/Siトンネル接合の形成 Formation of heavily doped BaSi₂/Si tunnel junction for an electrical contact $n^+-BaSi_2/p^+-Si, J=21A/cm^2 at 0.5 V$ Wet chemical etching ♥太陽電池動作の実証 Demonstration of solar cell Schottky-barrier diode $CoSi_2/n$ -BaSi_2, $\eta \sim 2-3\%$

