次世代半導体基板の超精密加エ プロセスに関する研究

熊本大学大学院 自然科学研究科 久保田 章亀

- 研究背景
- 提案加工法(鉄触媒援用研磨法)の紹介
- 単結晶SiC基板の加工例
- 単結晶ダイヤモンドの加工例

研究背景

エネルギー利用効率の向上に向けて、電気エネルギーの輸送や

変換装置に用いられるパワー半導体デバイスに飛躍的な性能向上

燃料電池自動車

が求められている.

ハイブリッド自動車

電力関係

エレベータ制御

産業用ロボット・モータ制御

研究背景

バンドギャップがSiに比べて大きい

-高温半導体デバイス材料としての優位性

- 高い飽和電子速度と高い絶縁破壊電界強度
 –(1)デバイスの大電流・高耐圧化 (2)高周波化 (3)小型化 (4)集積化 (5)低損失化
- ・ 高い熱伝導度

ーデバイス中で発生した熱を効率よく放出可能

	Si	GaAs	3C-SiC	6H-SiC	4H-SiC	GaN	Diamond
バンドギャップ(eV)	1.11	1.43	1.5	2.86	3.09	3.44	5.5
絶縁破壊電界(MV/cm)	0.6	0.6	1.5	3.2	3.2	2	10
移動度(cm²/Vs) 電子	1100	6000	750	370	800	900	2000
正孔	420	320	40	90	115	10	1550
飽和電子速度(10 ⁷ cm/s)	1.0	1.0	2.5	2.0	2.0	2.5	3.0
熱伝導度(W/cmK)	1.5	0.5	5.0	4.9	4.9	2.1	20.0
比誘電率	11.8	10.9	10	10	10	9.5	5.5

表 各種機能材料の物性比較

Kumamoto University

研究背景

パワーデバイス実用化への技術的課題

- 1. 結晶の大口径化技術・結晶欠陥の低減技術
- 2. 高品位<u>エピタキシャル膜成長技術</u>
- 3. 単結晶基板の<u>加工技術</u>

高硬度かつ化学的に安定なため, 次世代パワーデバイス用材料の 加工は極めて困難

<u>加工技術の開発が技術的課題のひとつ</u>

機械加工と化学加工との違い

機械的作用による 材料欠陥の導入,運動,増殖

(a) 機械加工

加工能率:◎ 加工精度:△~× 表面の原子が自然に除去される 物理・化学現象

求められる加工技術の要件

材料と硬度

硬度	修正硬度	標準鉱物名	化学組成	硬さ(Hk)]
1		滑石 タルク	$Mg_3(OH)_2(Si_4O_{10})$	_	
2		石膏	CaSO ₄ .2H ₂ O	32	
3		方解石	CaCO ₃	135	
4		蛍石	CaF ₂	163 🖌	1 1
5		燐灰石	Ca ₅ F(PO ₄) ₃	430	
6		正長石	K(AISiO ₈)	560	<u></u> <u></u>
7		熔融石英	SiO ₂	_	
7	8	石英 水晶	SiO ₂	820	
8	9	黄玉トパーズ	$AI_2(F,OH)_2(SiO_4)$	1340	
-	10	ザクロ石	(Mg,Ca,Fe) ₃ (Al,Cr,Fe) ₂ (SiO ₄) 3	1360	
-	11	熔融ジルコニア 炭化タンタル	ZrO ₂ TaC	(1160) 2000	
9	12	綱玉 コランダム 炭化タングステン	Al ₂ O ₃ WC	(2100) 1880	
-	13	炭化ケイ素	SiC	2480	
-	14	炭化ホウ素	B ₄ C	2750]
10	15	ダイヤモンド(金剛石)	С	7000	

機械的作用による加工面の一例

(b) 1/4µmのダイヤモンド砥粒
 を用いた加工面
 Ra: 0.340 nm PV: 3.481 nm

粒子径の小さなダイヤモンド砥粒を用いることによって, 研磨傷(スクラッチ)深さの低減や加工ダメージ導入の 抑制を図っている.

表面に削りやすい層(酸化層 あるいは水酸化物層)を化学 的に形成し,その部分を機械 的に除去する研磨方法.

スラリーと呼ばれる化学薬品 と研磨粒子(主に酸化物微粒 子,粒子径数十nm~数µm) を混合した溶液を使用.

UV(紫外光)アシスト研磨法

化学的機械的作用と光化学反応を重畳させた 高精度加工方法の可能性を検討

Kumamoto University

触媒基準エッチング法

<u>触媒基準エッチング法 CAtalyst-Referred Etching (CARE)</u>

CAREに求められる要件 1.基準面である触媒表面で反応種が作られる 2.反応種は触媒表面を離れると直ちにに失活する 3.触媒表面の物性は長時間変化しない

フッ酸(HF)溶液中で白金(Pt)触媒 を作用させることによって加工を実現.

- ◎ 化学的な加工のため、加工面にダメージ無し
- ② 凸部から選択的に加工するため、高能率な平坦化が可能 (結晶欠陥や結晶面方位の影響を受けにくく、多結晶材の平坦化も可能)

大阪大学 山内和人研究室 HPより引用

活性種の酸化力について

Reactive Species	Relative Oxidation Power (Cl ₂ :	=1.0)			
Flourine	2.23				
Hydroxyl radical	2.06				
Atomic oxygen (singlet)	1.78				
Hydrogen peroxide	1.31				
Perhydroxyl radical	1.25		ö::ö	·Ö∷Ö	·Ö::Ö·
Permanganate	1.24		Oxygen	Superoxide anion	Peroxide
Hypobromous acid	1.17		02	·02	·02 ⁻²
Chlorine dioxide	1.15	H	Ö::Ö:H	·Ö:H	ю.н
Hypochlorous acid	1.10	Livelan	on Demovide	Y. T	
Hypiodous acid	1.07	Hyarog			
Chlorine	1.00		202	·OH	OH
Bromine	0.80				
lodine	0.54				

OHラジカルの発生方法

OHラジカルの発生方法

Kumamoto University

- × 超音波照射
- △ 放電プラズマ
- △ 酸化チタンを用いた光触媒反応
- 促進酸化法:過酸化水素,オゾン,紫外線による反応 -
- ◎ フェントン反応による方法:H₂O₂+Fe²⁺→OH·+ Fe³⁺+OH⁻

14

活性種(OHラジカル)の供給方法

従来の機械的研磨後

提案する加工法

微粒子を媒体にしてOH・を被加工物近傍に供給し, 被加工物表面の最 表面を改質し, 改質層を除去, エッチングすれば高能率加工ができるの では?と考えた.

提案する加工法の加工原理

 $\begin{aligned} & \operatorname{Fe}^{2+} + \operatorname{H}_2 \operatorname{O}_2 \to \operatorname{Fe}^{3+} + \operatorname{OH}^{-} + \underbrace{\operatorname{OH}^{\bullet}}_{\operatorname{Fe}^{3+} + \operatorname{H}_2 \operatorname{O}_2} \to \operatorname{Fe}^{2+} + \operatorname{OH}^{\bullet} + \operatorname{H}^{+} & \cdots & (2) \\ & \operatorname{SiC}_{+4} \underbrace{\operatorname{OH}^{\bullet}}_{\operatorname{Fe}^{2+} + \operatorname{O}_2} \to \operatorname{SiO}_2 + 2\operatorname{H}_2 \operatorname{O}_2 + \operatorname{CO}_2 \uparrow & \cdots & (3) \\ & \operatorname{SiO}_2 + 2\operatorname{OH}^{-} \to [\operatorname{SiO}_2(\operatorname{OH})_2]^{2-} & \cdots & (4) \end{aligned}$

OH・とH₂O₂中の溶存酸素によりSiC表面を酸化改質(SiOx)し、その部分を優先的に除去・溶出することによって加工を実現する.

加工原理の検証実験(XPSによる表面評価)

フェントン試薬(FeSO₄+H₂O₂)中にSiC基板を浸漬さ せることによって、SiC表面上に酸化物形成を確認.

磁性微粒子を用いた触媒化学加工方法

粒子を安定保持可能

磁力制御により、鉄粒子凝集状態を制御可能(パッドレス研磨)

鉄粒子を磁力で保持したsmall toolを用いることにより,非球面形状等の表面創成が可能

Kumamoto University

加工前後の表面凹凸の変化

<u>加工前</u>

SiC基板の大口径化(新聞報道)

・普及のカギとなる6だ。 C)単結晶ウエハー 径の炭化ケイ素(Si た。20 石)を開発したと発表 6¹S-C D T -2年度にサ 高性能パワー半導体向け 寡 NEW ON OTHER 要求が強いため、従来の 本格化が見込まれる。 4 7 動車向けの用途ではデバ ンプル出荷を始める。自 イスの製造コスト したことで実用開発の ウー半導体市場で 一切した。 一切した。 の で の に 年ご の で の の に 年ご の し な が の ら ち の の の し な が い ら ち う の の の が の う い の ち の の の の あ 重 や 鉄 道 で、高度なシミュる昇華再結晶法 (写真左)から大径 り、新日鉄は市場 ろと見られてお 用いて精密に温度 高温環境で製造す 産時期を探る。 動向を見ながら量 2500度Cの 高度なシミュ 技術を -の低減 11 以下で、 表。新日鉄はより高品質 は 材料と見られている。 径化を実現した。研究開 は4月にクロスライセン なパワ 大幅に小型化でき、 スと比べ電力損失が半分 発費は約12億円。 抑える設備機構の最適化 結晶成長条件、 制御。欠陥発生を抑える 開発を公表した形。 に発光ダイオ よる大口径結晶の割れを ş 開 6か径SiCウエハー 米クリーが10年9月 Cは従来のデバイ 発 デバ 半導体用向は イス体積も 熱応力に L E 新 日鉄 パワ 両社 C た。約15億円を投じ、中 B)用負極材の生産能力 ジェクト」か 青島市)の年産能力を4 国の 進めている。 型産業技術開発費助成金 産業技術総合開発機構の2は、新エネルギー・ れに開発を競っている。 新材料パワー半導体プロ「低炭素社会を実現する 三菱化学は6日、20 (NEDO)の課題設定 この研究開発費の3分 合年秋に中国でリチウ 中 都化成」(山東省15億円を投じ、中 からの助成で 国で 三菱化15

2011年(平成23年) 13 版 蒸気の 7 Ζ となら 水曜日 Business & Technology 第21275号 夏 株式会社 ティエルブイ 2011 割前後小 電力制御などに使う。S パワー半導体市場の規模 機器や産業機器、 -半導体 導体はシリコン 次世代パワ て一般に電力損失がら Cを材料にするパワ 社長 (兆円) 金い 半導体は機器の パワー半導体全体 他社の電力 (次世代含む) 情報通信 ン朝に比 ルネサス富士電機や 풀 れとして期待されるSーCが早期に普及する可能性が高まる。 コスト競争力が高まる。 討に入った。 主流だが、富士電機やルネサスエレクトロニクスが6ぢ(150。」が) ę 半導体メー 3 炭化ケイ素 半導体のウエハーを大型化する。 障壁になっている。 ら数十倍しているのが現 格がシリコン製の10倍か 採用が始まった。ただ価担うダイオードの一部で ンで電流を整える役割を 直径を2倍にすれば1枚のウエハー 力 高コストが普及への か20 Ō 20年 (予測) 11 (見通し) 10 (億円) 1400 大口孫化でコストダウンが進み、機器の省エネルギーの切り 6 2年度にも基板材料に炭化ケイ素(S-C)を使つ次世代 SiCなどの 1200 次世代パワー半導体 コスト 1000 チイン 800 ş のラインを設置する方向 12年度に自社工場に6% めるのに続き、 たのウエ 産業技術総合研究所と3 富士電機は11年度中に 現在は直径3-600 C半導体の生産を始 積極購 で量産検討 400 ハー対応設備で 200 から取れるチップ数が約4倍になり 01 早ければ 20 (予測) 11 年 (見通し) 4%(行き 富士経済の資料を基に作成 减 で調整に入った。ルネサ δŲ だで生産の成果を見種 スエレクトロニクスは3 拠点を周辺国・地域への 約2倍の 間に、海外の拠点新設や 度から14年度までの3年 ų, 産増強に四-12年度の 12年度にも6だでの)での生産の検 中国などアジアの 電機は20 アジ 普 80億円を投 反促す 韋 3年間 安川電が海 アを輸 で産業用ロポット 純に大口径化すればよい ь は現在4だで生産してお 体国内最大手の三菱電機 6万ウエハーを早期に導 ネサスは生産効率の高い õ フィニオン・テクノ が生産。海外では独イン すでにロー 生産開始を目指す。 合わない は需要地での生産を基本 するほか、産業機械に組 輸出基地にする。アジア 力を高める。パワー 入してコスト やす方針。これまで同社 み込むサ 輸出していた。 ş ズなどが本腰を入れ メモリ 後発の富士電機やル 現地生産の採算が Cのダイオ い場合日 ķ ムや三菱電機 ì ずも を抑え競争 のように単 の生産を増 円高の長 「を生産 こ本から 2 業専 9 Ŕ ٩þ Þ 부 앞 生き残りのカギになる。 ある自動車向けの供給は とされる。需要の本命で るが依然高止まりする。 ある状況。ウエハー る三菱電機ですら、現時内に応用製品を多数抱え を生産する各社が小 対応の準備は進める。 姿勢だが、6だウエハー る体制を築く 含るかがS-製造技術を早期に確立で 必須。6だウエハーでの 受注にはコストダウン 15年以降と見られるが していくのは間違いな 格は米クリー 点では生産能力に余裕が されるからだ。また自社 ると歩留まりが下がると 応策を講じなければなら 容易でない。企業として がここまで続くと、 判断。アジアから輸出す 戦争力が維持で含た 期化で日本からの輸出は に課題があり大口径化す 赤字は許されない 5 SーCが中長期で普及 先行してSIC半導体 見合うコストダウンは 律田純嗣社長は「円高 出 <u> </u> を使ってい THAT D ・の結晶構造 基 C市場で の一社独占 列 가봐 1200 からら それ 2

Kumamoto University

3インチ・2インチのSiC基板

一般的なSiC基板の加工工程

安価・高能率・高精度に一括で加工できないか?

インチサイズSiC基板平坦化へ向けた装置開発

各時間におけるSiC基板平坦化の過程

(a) Preprocessing

(d) Processing time:4 h

(b) Processing time:1 h

(e) Processing time:6 h

(c) Processing time:2 h

(f) Processing time:8 h

加工前のAs slice面の状態から鏡面を実現

金属顕微鏡による表面観察

位相シフト干渉顕微鏡による表面評価

Ra: 0.89 nm, PV: 9.27 nm

加工表面の原子間力顕微鏡像

Ra: 0.160 nm, RMS: 0.195 nm, Rz: 1.71 nm

提案加工法により原子レベル平坦面を実現

ダイヤモンドの高精度加工への試み

代表的なダイヤモンドの加工法

・ <u>ダイヤモンド砥粒を用いたラッピング(スカイフ加工)</u>

機械的・熱的破壊を通じて 材料を除去する

・ <u>レーザー加工</u>

局部的に加熱し、ダイヤモン ドを構成する炭素を炭酸ガス 化して除去する

熱的加工であるため, 表面への ダメージが大きい

・ <u>イオンビーム加工</u>

アルゴンなどのイオンを照射 することでダイヤモンドを構 成する炭素原子を除去する

溶液中でのダイヤモンド加工への挑戦

常温・常圧下における溶液中での触媒化学反応を 利用した加エプロセスであるため,<u>高コストな真</u> <u>空チャンバーや排気ポンプ等が一切不要</u>.

低コスト・低環境負荷型の 新しいダイヤモンド基板加工法

提案する加工法の加工原理

ダイヤモンド表面の加工量と表面粗さ

Kumamoto University

33

加工前後の表面凹凸の変化

ラマン分光測定

ラマン分光法

