

地表における太陽光スペクトル (AM1.5)

実用化への課題:太陽光スペクトル(可視光)の有効利用

DFT計算(状態密度:VB付近) Total 14 BiOC — Total 80-Bi₄NbO₈Cl DOS (electrons / eV) Bi Bi DOS (electrons / eV) 0 60 CI 40 20 0 -3 -2 -1 0 -6 -5 -2 0 Total 14 Bi₄NbO₈Br Total **BiOBr** 80 -Bi DOS (electrons / eV) Bi DOS (electrons / eV) 12 0 10-60 0 R 8 4٢ 6 20 0 0 -2 -6 -3 -2 0 -5 -4 -1 0 -6 Energy / eV Energy / eV 価電子帯上端は主にCl3p (Br4p)と O2p軌道により構成 価電子帯上端は主にO2p軌道

Bi₄NbO₈ClにおけるBiのPDOS

36

シレン-アウリビリアス系の特異なバンド構造

Revised lone pair model for Bi₄NbO₈Cl

Kunioku et al., J. Mater. Chem. A, 2018, DOI: 10.1039/C7TA08619A

Kato et al., J. Am. Chem. Soc. 2017, DOI:10.1021/jacs.7b11497

Photocatalytic H_2 or O_2 evolution on Bi_4NbO_8CI

Bi₄NbO₈ClをO₂生成系とするZスキーム可視光水分解

光触媒活性評価~Fe³⁺を電子受容体とする酸素生成反応~