記位分子を用いた二次電池材料と エネルギーハーベストへの展開

	LiCoO ₂	LiMn ₂ O ₄	LiFePO ₄	Li ₂ Mn[Fe(CN) ₆]			
Capacity (mAh/g)	274(ideal) 160(effective)	148 130	170 ~170	191 120			
Voltage vs Li	3.9V	4V	3.5V	3.5-3.9V			
σ (Scm ⁻¹)@300K	metal	10 ⁻³⁽¹⁾	10 ^{-8 (2)}	10 ^{-5 (3)}			
D (cm ² s ⁻¹)	10 ^{-11~} 10 ^{-13 (4)}	10 ⁻¹⁰ ~10 ^{-11 (5)}	10-12~10-15 (6)	10 ⁻⁹ ~10 ⁻¹⁰⁽⁷⁾			
Li diffusion pass	2D	Li forms network	1D	3D			
Structural prop.	Successive ST	ST	PS	No PT			
	*	X					

Cathode Materials for LIR

1) JAP95(2004)6825, 2)PRB68(2003)195108, 3)JJAP50(2011)060210, 4) JPS159(2006)1422, 5) JPS93(2001)93, 6) EA54(2000)4631, 7) Our work

配位分子を用いた二次電池材料

・配位高分子の性能は ・電池材料の中でなにがおこっているのか

・配位高分子の負種動作の起源

Prussian blue analogues current flow⇔ ion flow Fe TM cyano Oxidize Guest Radius Li+ 0.92A A Na⁺ 1.18A electrons lons K+ 1.51A Rb⁺ 1.61A Cs+ 1.74A

 Reduce
 Store

 Li*(organic solvents) LIB
 Store

 Na*(organic solvent) SIB
 Store

 Cs*(water) decontamination, A. Oomura et al., APEX5(2012)057101
 Rb*(water) storage within 2 sec., T. Shibata, et al. ChemComm50(2014)12941

 Ca²⁺ etc. (water) Y. Wang, NanoLett13(2013)5748
 Store

Ion Secondary Battery

Mys. Capacity

 $Li_{x}M[Fe(CN)_{6}]_{y}$

Μ	Mn	Со	Co	Ni	Cd
У	0.81	0.90	0.71	0.68	0.96
Capacity (mAh/g)	~120	~140	~70	~70	~60
Redox site	Mn,Fe	Fe,Co	Fe	Fe	Fe

T. Matsuda, *et al.*, APEX 4, 047101 (2011). Y. Moritomo, *et al.*, APEX 5, 041801 (2012). M. Takachi, *et al.*, JJAP 52, 044301 (2013).

Mobile electronics

OCV discharge curve

Ex situ XRD

BL02B2@SPring-8

All the diffraction peaks can be indexed by face-centered cubic model.

Lattice constants were refined by Rietveld method.

Ex situ XAS around Co K

7C/9A@PF/KEK H. Nitani

We evaluates the Co valence (s) by spectral decomposition: $\Phi(x) = (s-2) \Phi(0.0) + (3-s) \Phi(1.6)$

Ex situ XAS around Fe K

7C@PF/KEK

With use of empirical relation, we evaluated the Fe valence (s) from the peak position.

Kurihara, et. al, JPSJ79(2010)044710

9A@PF/KEK

How to monitor PS of Co-PBA

PS induced by Li⁺ intercalation

If we assume the chemical composition of respective phases as

 $Li_{0.6}Co^{3+}[Fe^{2+}(CN)_6]_{0.9}$ $Li_{1.6}Co^{2+}[Fe^{2+}(CN)_6]_{0.9}$

The PS reaction is expressed by the following reaction equation:

Li* freely moves in the framework to keep the local charge neutrality. This allows macroscopic PS.

Length scales of PS and grain size

 $\begin{array}{c} \mbox{Length scale of PS is $10 \ \mu m} & \mbox{Grain size is $sub-\mu m$} \\ \mbox{The PS occurs beyond the grain boundary, $possibly$ mediated by inter-grain volume contraction.} \end{array}$

Rietveld analysis at x = 1.2

Green phase: Li_{1.6}Co²⁺[Fe²⁺(CN)₆]_{0.9} face-centered cubic (Fm<u>3</u>m) $a = 10.1848 \pm 0.0006$ A

Li⁺ deintercalation dynamics

The macroscopic PS indicates that Li selectively removed at the phase boundary. The Li removal transforms the green phase to the black phase.

Why at the phase boundary.

Strain at the phase boundary advantageous for the Li⁺ deintercalation. The Strain makes the Li deintercalation and subsequent phase transformation into the black phase easier, as compared with the new nucleation of a micro-domain in another part of the green phase Original proposed by Delmas on LiFePO₄: Nature Mater. 7 (2008) 665

PBAの負極動作 1.0.5 V vs.Li/Li+ 2.>1000 mAh/g 問題点

これ以上Li⁺は入らない

2. Fe²⁺もMn²⁺も還元できない

一体何が起こっているのか?

三価第二鉄のコンバージョン反応が起こっているだけ

エネルギーハーベストへの展開

・「三次電池」の提案・配位高分子の性能は

電池の進化 IT機器 ΕV エコ&スマート社会

Thermal Coefficient α

T. Shibata, Y. Fukuzumi, W. Kobayashi & Y. Moritomo, Appl. Phys. Express 11, 017101 (2018).

 $T_{\rm H} = 323 \text{ K}$ $I = 2.9 \,\mu\text{A}$

energy

0.1

34

実施例2

1 mol/l NaClO₄ in PC

Charge / e/NCF90 Y. Fukuzumi, K. Amaha, W. Kobayashi, H. Niwa & Y. Moritomo, Energy Technol. 10.1002/ente.201700952

酸化還元電位の温度係数α

大きな電力を得るには、傾き(α)を大きくすればよい。

2019/1/24 Focus Systems打ち合わせ@筑波大学

3d電子の配置エントロピー						
ΔS	$_{3d} = S_{3d}^{2+} - S_{3d}^{3+}$	$S_{3d} = k_B lnW$				
T	able 3: 3d-electron confi	iguration entro	(S_{3d})			
Co ²⁺	election configuration	kpln(4×3)	e aang			
Co3+	e016	$k_{n}\ln(1 \times 1)$				
			0.21 mVK ⁻¹			
Mn ²⁺	$e_{a}^{2}t_{2a}^{3}$	$k_{\rm B} \ln(6 \times 1)$	02/24-30) 2024			
Mn ³⁺	e113	$k_{\rm B} \ln(5 \times 2)$				
-	_	-	-0.04 mVK^{-1}			
Fe ²⁺	$e_{g}^{0}t_{2g}^{6}$	$k_{\rm B} \ln(1 \times 1)$				
Fe ³⁺	e ⁰ ₂ t ⁵ ₂₀	$k_{\rm B} \ln(2 \times 3)$				
_			-0.15 mVK ⁻¹			

Co_{1-z}Mn_z - Redox siteとαとの相関

H. Iwaizumi, et al. Dalton Trans. in press

まとめ

- PBAは二次電池材料として有望である。特に、高速応答、色変化による電圧モニター、といった特徴を兼ね備える。
 顕微その場分光により、Co-PBA充電中のマクロな相分離を観測した。
 PBAの低電圧挙動は、酸化第二鉄のコンパージョン反応であ
- ъ.
- 4. エネルギーハーベスト技術の一つとして「三次電池」を提案し た.
- 5. PBAのαは、3d電子の配置エントロビーで理解できる。

謝辞:SPring-8、PF 高地正光、福住勇也、岩泉滉樹、藤原祐介 小林航、丹羽秀治(筑波大) 柴田恭幸(群馬高専)