

金属有機構造体を利用した 固体マグネシウムイオン 伝導体の開発

貞清 正彰

東京理科大学 理学部第一部応用化学科 准教授

2025年1月22日 14:30~15:10 第42回無機材料に関する最近の研究成果発表会 @ 住友会館 (日本板硝子材料工学助成会)

研究対象(専門:固体化学)

結晶性多孔体: Metal-Organic Frameworks (MOFs)

自己紹介·研究経歴

研究室の紹介

東京理科大学理学部第一部応用化学科 貞清研究室(2019年4月~)
 (神楽坂キャンパス ・ 葛飾キャンパス ・ 野田キャンパス)

Group members (2024)

教員(貞清)1名、学生17名

https://www.rs.tus.ac.jp/sadakiyo/

E-mail: sadakiyo@rs.tus.ac.jp

市ヶ谷駅・飯田橋駅より徒歩(@東京)

背景・目的:イオン伝導体

背景・目的: 固体マグネシウムイオンニ次電池

安価・安全・高エネルギー密度

Liイオン伝導体 (Li+:一価)

○報告例 多数
 ○高イオン伝導性¹⁾ (> 10⁻² S cm⁻¹)
 ×高コスト
 ×低(体積)エネルギー密度

Mgイオン伝導体 (Mg²⁺:二価) 〇低コスト 〇高(体積)エネルギー密度 ×報告例 少数 ×低イオン伝導性²⁾ (< 10⁻⁴ S cm⁻¹)

1) Y. Kato, S. Hori, R. Kanno et al., Nat. Energy 2016, 1, 16030.

2) P. Canepa et al., Nat. Commun., 2017, 8, 1759

背景・目的: 従来の固体中でのマグネシウムイオン伝導

7

隣接イオンとの強い静電相互作用により著しく低いイオン伝導性

背景・目的:配位高分子を用いた多価イオン伝導

- $1.2 \times 10^{-2} \text{ S cm}^{-1} (27 \ ^{\circ}\text{C})$ Li+ $(Li_{10}GeP_2S_{12})$
- Mg²⁺ 1.0×10^{-4} S cm⁻¹ (25 °C) $(MgSc_2Se_4)$

配位高分子(MOFまたはPCP)

①隙間が大きい構造 静電ポテンシャルの緩和

②ゲスト分子 配位結合・錯形成の利用 (遮蔽効果、分子運動)

背景・目的: ゲスト誘起Mg²⁺イオン伝導性

Mg²⁺含有 MOF σ > 10⁻⁴ S cm⁻¹

Mg²⁺塩 有機ゲスト分子 (Mg(TFSI)₂) (e.g. MeOH蒸気)

Mg-MOF-74 ⊃ {Mg(TFSI)₂}_{0.15} 2.6 × 10⁻⁴ S cm⁻¹ (25 °C)

Mg²⁺の錯形成(溶媒和)による超Mg²⁺伝導性

ゲスト分子とMg²⁺の錯形成(溶媒和)による高Mg²⁺伝導性の発現

Y. Yoshida, <u>M. Sadakiyo</u>* et al., *J. Am. Chem. Soc.* 2022, 144, 19, 8669–8675.
Y. Yoshida, K. Kato, <u>M. Sadakiyo</u>*, *J. Phys. Chem. C* 2021, 125, 21124–21130.

本発表の内容

➤ マグネシウム塩含有MOFにおけるゲスト誘起Mg²⁺イオン伝導

> 母骨格の細孔径および細孔の次元性に関する検証 (1次元~3次元、小細孔径~大細孔径)

→ 母骨格の電荷に関する検証 (アニオン性骨格、中性骨格)

本発表の内容

▶ マグネシウム塩含有MOFにおけるゲスト誘起Mg²⁺イオン伝導

日骨格の細孔径および細孔の次元性に関する検証 (1次元~3次元、小細孔径~大細孔径)

> 母骨格の電荷に関する検証 (アニオン性骨格、中性骨格)

イオン伝導経路となる母骨格

一次元 & 小細孔径

J. R. Long, et al., Energy Environ. Sci. 2014, 7, 667.

▶ 三次元 & 大細孔径

C. Férey, et al., Science 2005, 309, 2040.

MOFs⊃{Mg(TFSI)₂}_{x,y}の合成

L. Bromberg, et al., Chem. Mater. 2012, 24, 1664.

ΗÓ

OH

 $\begin{aligned} & \text{MIL-101} \\ & \{\text{Cr}_{3}\text{O}(\text{OH})(\text{H}_{2}\text{O})(\text{C}_{8}\text{O}_{4}\text{H}_{4})_{3}\}_{\infty} \end{aligned}$

 $MIL-101 \supset {Mg(TFSI)_2}_y (y = 0, 0.5, 1.1, 1.6, 1.7)$

XRPD および N₂吸着 (Mg-MOF-74)

 $Mg(TFSI)_2$ was successfully included in the pores below x = 0.15.

XRPD および N₂吸着 (MIL-101)

 $Mg(TFSI)_2$ was successfully included in the pores below y = 1.6.

雰囲気制御下でのイオン伝導度測定

Y. Yoshida, K. Kato, M. Sadakiyo*, J. Phys. Chem. C 2021, 125, 21124.

イオン伝導度

イオン伝導度

室温で実用領域の 10⁻³ S cm⁻¹ のイオン伝導度

Mg-MOF-74 (x = 0.15) におけるゲスト誘起イオン伝導

Y. Yoshida, M. Sadakiyo et al., J. Phys. Chem. C 2021, 125, 21124.

Mg-MOF-74 (x = 0.15) におけるゲスト誘起イオン伝導

Mg²⁺輸率測定

J. Electroanal. Chem. 1987, 225, 1-17.

Mg²⁺含有化合物との比較

Material	Compound	Temperature (°C)	Conductivity (S cm ⁻¹)	t_{Mg2+}	Ref.
Phosphate	$Mg_{0.5}Zr_{2}(PO_{4})_{3}$	400	2.9×10^{-5}	—	(1)
Borohydride	Mg(BH ₄) ₂ (NH ₃ BH ₃)	30	1.3 × 10 ⁻⁵	—	(2)
Chalcogenide	MgSc ₂ Se ₄	RT	1.0×10^{-4}		(3)
MOF	$Mg_{2}(C_{14}H_{6}O_{6}) \cdot [{Mg(TFSI)_{2}}_{0.46} \cdot {Mg(OPhCF_{3})_{2}}_{0.21}]$	RT	2.5×10^{-4}	—	(4)
MOF	$Cu_4(ttpm)_2 \cdot (CuCl_2)_{0.6} \cdot (MgBr_2)_{0.7}$	RT	1.3 × 10 ⁻⁴	—	(5)
MOF	MIT-20-Mg	RT	8.8×10^{-7}	—	(6)
MOF	MIL-100 · (Mg(CIO ₄) ₂) _{1.6}	RT	1.0×10^{-3}	_	(7)
MOF	Mg-MOF-74⊃{Mg(TFSI) ₂ } _{0.15} Y. Yoshida, M. Sadakiyo, et al., <i>J. Phys. Chem.</i> C 2021 , <i>125</i> , 21	RT 124.	2.6×10^{-4}	0.47	This work
MOF	MIL-101 ⊃ {Mg(TFSI) ₂ } _{1.6} Y. Yoshida, M. Sadakiyo, et al., <i>JACS</i> 2022 , <i>144</i> , 8669-8675.	RT	1.9 × 10 ⁻³	0.41	This work

Mg²⁺含有結晶性固体の中で世界最高値のイオン伝導度を達成

(1) Solid State Ionics, **1987**, 23, 125-129. (2) J. Phys. Chem. C **2019**, 123, 10756-10763. (3) Nat. Commun. **2017**, 8, 1759. (4) Energy Environ. Sci., **2014**, 7, 667-671. (5) J. Am. Chem. Soc. **2019**, 141, 4422-4427. (6) J. Am. Chem. Soc. **2017**, 139, 13260-13263. (7) ACS appl. Mater. Interfaces **2020**, 12, 43824-43832.

吸着ゲスト分子数 (MIL-101)

MeCN蒸気下でのFT-IR測定 (MIL-101)

Y. Yoshida, M. Sadakiyo et al., JACS 2022, 144, 8669-8675.

イオン伝導度のゲスト蒸気分圧依存性

Y. Yoshida, M. Sadakiyo et al., *JACS* **2022**, *144*, 8669–8675.

イオン伝導度 vs. 吸着ゲスト分子数 (MIL-101)

Y. Yoshida, M. Sadakiyo et al., *JACS* **2022**, *144*, 8669–8675.

本発表の内容

▶ マグネシウム塩含有MOFにおけるゲスト誘起Mg²⁺イオン伝導

> 母骨格の細孔径および細孔の次元性に関する検証 (1次元~3次元、小細孔径~大細孔径)

> 母骨格の電荷に関する検証 (アニオン性骨格、中性骨格)

構造とイオン伝導度の関係の解明

構造とイオン伝導度の関係の解明

Pore size

Dimension

$XRPD(UiO-66 \supset \{Mg(TFSI)_2\}_y)$

骨格を保持したまま、ナノ細孔内への Mg(TFSI)2 の導入を示唆

N₂吸着等温線(UiO-66⊃{Mg(TFSI)₂}_v)

イオン伝導度(UiO-66⊃{Mg(TFSI)₂}_{1.0})

ゲスト蒸気下で最大 3.7×10-4 S cm-1の超イオン伝導性

構造とイオン伝導度の関係の解明

Pore size

Dimension

本発表の内容

▶ マグネシウム塩含有MOFにおけるゲスト誘起Mg²⁺イオン伝導

日骨格の細孔径および細孔の次元性に関する検証 (1次元~3次元、小細孔径~大細孔径)

→ 母骨格の電荷に関する検証 (アニオン性骨格、中性骨格)

Mg²⁺をMOFに導入する方法

②アニオン性骨格を用いたイオン交換 → Mg²⁺ シングルイオン伝導体

合成

合成

1) J. Am. Chem. Soc. 2019, 141, 17522–17526. 2) Nat. Water. 2023, 1, 433–442.

合成(イオン交換によるMg²⁺導入)

同定(MOF-688-Mg → 非晶質)

同定(SU-102-Mg → 非晶質)

イオン伝導度

ゲスト蒸気下で高イオン伝導性を示すが、骨格との強い静電相互作用を示差

MeCN蒸気下でのFT-IR測定 (SU-102-Mg)

Mg²⁺塩の場合と同様に、配位性イオンキャリアの形成を確認

まとめ

①ゲスト誘起Mg²⁺伝導による世界最高値のMg²⁺伝導体を創出

Y. Yoshida, K. Kato, M. Sadakiyo*, J. Phys. Chem. C 2021, 125, 21124–21130.

Y. Yoshida, <u>M. Sadakiyo</u>* et al., *J. Am. Chem. Soc.* 2022, 144, 19, 8669–8675.

②ゲスト誘起Mg²⁺伝導における細孔のサイズ・次元性の影響を解明

K. Aoki, K. Kato, M. Sadakiyo*, Dalton Trans. 2023, 52, 15313–15316.

③アニオン性MOFを用いた新規Mg²⁺シングルイオン伝導体を創出

S. Niwa, <u>M. Sadakiyo</u>*, *Dalton Trans.* 2022, *51*, 12037–12040.
S. Niwa, S. Hashimoto, D. Chen, T. Toyao, K. Shimizu, <u>M. Sadakiyo</u>*, *Dalton Trans.* 2024, *53*, 12043–12046.

今後の展望

▶ 新規な高Mg²⁺伝導体の開発(高Mg²⁺シングルイオン伝導体、等)
 ▶ 固体電解質としてのマグネシウムイオンニ次電池への応用展開